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This review has two goals. One is to offer a critical review of Mark Holmes’s new book
on applied mathematics, and the second, broader goal is to put it into the context of
the discipline of applied mathematics.

Applied mathematics. Now there are two words that evoke a myriad of defini-
tions, impressions, and prejudices in both mathematicians and nonmathematicians
alike! My own favorite was a definition posed by Professor Stefan Drobot at Ohio
State when I was a student. In an expository colloquium organized by the gradu-
ate students around 1970, he defended, with tongue-in-cheek preciseness, the thesis
that “an applied mathematician is one who earns money for doing mathematics.” I
guess that even makes the great G. H. Hardy an applied mathematician and perhaps
removes his need for an apology. Actually, it is often-repeated folklore that Hardy,
whose name is part of the Hardy—Weinberg theorem in genetics, often regretted that
his name was on such an obvious and trivial result. Over my tenure I have heard men-
tors and colleagues express notions such as: Once you have studied analysis, algebra,
and topology, then you will be ready to study applied mathematics; Pure mathematics
is nothing more than parlor games; I wouldn’t use paper from the SIAM Journal of
Applied Mathematics for the bottom of my bird cage! Fortunately, these radical over-
tones have waned over recent years and most of us view mathematics as the cohesive
discipline of “mathematical sciences.” This even includes statistics! At the University
of Nebraska we have gone from requiring two Ph.D. written comprehensive examina-
tions in algebra and analysis to a flexible system where students may take their exams
in any area with the advice and consent of their Ph.D. supervisory committee.

Regarding professions, I have often heard the anecdote that pure mathematics is
a young person’s game, requiring genius and cleverness, whereas applied mathemati-
cians improve with age as their toolbox fills with tools. For example, it may be hard
to imagine a young mathematical scientist determining the strength of an underwa-
ter shock wave generated by a nuclear device and its effect on a distant subsurface
structure like a submarine; too many tools are required to approach this problem in
a serious way. (Perhaps these are just the reminiscences of old applied mathemati-
cians!) And now applied mathematics is becoming everyone’s game because even
nontraditional “applied” areas, such as abstract algebra, are finding fertile ground in
applications.

In a more serious tone, John von Neumann cautioned that there is danger when
mathematics loses its grounding in applications, the main one being that it will
progress along paths of least resistance. This view might suggest underlying defi-
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nitions of pure and applied mathematics—in pure mathematics the goal is to develop
new structures based on previous mathematical structures, whereas applied mathe-
matics seeks to develop new structures based on observations of the natural world.
In the latter case, there is an interdependence in which mathematics gives to science
and science gives back. The only caveat in these two interpretations is that it is often
difficult to discern the differences.

Applied mathematics itself evolved through different paradigms. A paragraph or
two, of course, cannot begin to detail these paradigms, but we can get the idea from a
few examples. Early in the twentieth century both pure and applied mathematics were
spurred by landmark advances in physics. At the same time, both probability theory
and synthesis in functional analysis experienced dramatic growth. To many, applied
mathematics also meant continuum mechanics, especially during the period around
the Second World War when fluid dynamics was a key to modeling flight, detonations
and weapon development, and other military and defense strategies. A little later,
during the aerospace age, fluids were still king and numerical analysis was born out
of the advent of computing devices. But these areas, especially continuum mechanics,
spawned an exodus to engineering departments, where aerospace engineering, engi-
neering mechanics, and theoretical and applied mechanics departments blossomed.
Mid-century, nonlinear mathematics, again spurred by von Neumann, began to take
hold as individuals advanced the understanding of nonlinear equations and processes.

In the 1970s a benchmark paradigm appeared with the publication of Lin and
Segel [5], who articulated a radical new viewpoint emphasizing the intimate connec-
tions between mathematics and the physical and natural world. They were able to
synthesize the thinking of many practitioners on the nature of the subject. Applied
mathematics became closely aligned with mathematical modeling and a philosophy
that problems in all areas where quantitative ideas occur—economics and finance,
physics, biology, and so on—could be formulated as a model. Out of that revolution
arose the modeling of practical industrial processes. In fact, in the 1980s everyone
wanted to have an “industrial mathematics” program, modeled, for example, on the
one at North Carolina State or those at Rensselaer Polytechnic Institute (RPI), or
Minnesota. Prior to this, applied mathematics texts and courses often were often
organized around traditional mathematical topics such as differential and integral
equations, calculus of variations, Green’s functions, and boundary value problems,
many of which we now consider to belong to the realm of applied functional analysis.
Some still hold this traditional view. However, many applied mathematicians now no
longer wait for an engineer’s knock on the door with a plea to help solve a difficult
differential equation; they feel it is their job to learn the engineering and participate
in the formulation of the problem as well. These days, beginning perhaps 15-20 years
ago with the genome project and advancements in DNA sequencing, mathematical
biology is at the forefront, and there are tremendous efforts in life science depart-
ments to put more quantitative material in their courses and a rush by mathematics
departments to develop joint math-biology programs.

This view, that applied mathematics consists of the development and analysis of
“models,” has been embraced by every discipline. Lin and Segel extracted the core
ideas about how to think about problems and theories, and they articulated what
others could not express. Perhaps this is the true essence of the discipline!

As Mark Holmes notes in his new text, changes in the applications of mathematics
are the rule. Nudged by advances in technology, funding resources, and so on, the
superficial definition of applied mathematics evolves because of these new modeling
frontiers. But, expanding upon an observation by Holmes, there is an underlying,
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unchangeable set of tools that are fundamental to our endeavors. A ticket to success
in a particular application is to get in when the gradient is positive, not negative; the
best way to do this is to possess the right tools. This makes a book like Holmes’s
text highly relevant in today’s curriculum; even though many of his applications
are centered on continuum theories, the book still focuses on core ideas useful for
applications. Besides, continuum theories will always be a central part of the applied
mathematics paradigm.

Holmes’s text was spawned from the Fundamentals of Applied Mathematics
(FOAM) course at RPI, which he taught for two years. I was fortunate enough
to sit in on that course and hear the lectures of Professor Ash Kapila during a sab-
batical at RPI in 1988-1989. This course has a long history that intertwines with the
development of applied mathematics beginning in the early 1970s. The cornerstone of
FOAM is a two-volume set, the Lin and Segel [5] book noted earlier and a companion
volume by Segel and Handelman [8]. The year 1974 was a bumper crop for applied
mathematics that year because G. B. Whitham’s book [9] on linear and nonlinear
waves appeared as well. These classic, landmark books, whose influence on the disci-
pline has been profound, belong on the list of the most important mathematics books
published in the twentieth century. Holmes views his new text, in some sense, as an
updated version of the Lin and Segel and Segel and Handleman books. That was
also the motivation of my own 1987 text on applied mathematics [6], and T suspect
there will be additional rewrites of these texts as important areas of application, with
yet newer models, emerge. Holmes reasons that applications that are important and
current in applied mathematics change over time, requiring revisions.

The view that applied mathematics represents the interplay between mathematics
and the natural sciences is underpinned by the notion of a mathematical model.
The field of mathematical modeling seeks to create caricatures of physical situations
in mathematical or analytical terms, with well-defined quantities (parameters and
variables) and relations among these quantities. Important elements of a model are
that it is simple, it applies to many situations, and it is predictive. With regard to
the latter property, an important part of modeling is to test the model’s predictions
against real data and fine tune the model accordingly. Unfortunately, nearly all
texts written on applied mathematics fail to confront the models they discuss with
experimental data. This is certainly true of Holmes’s text as well. We all seem to get
into the groove of developing theoretical discussions and ask the readers, by faith, to
believe in the validity of these models. Validation takes us too far afield and forces
us to think about probability, statistics, and data fitting—more topics to include in
our already sated textbooks. Typically, and fortunately, however, students do believe
our models and are willing to postpone their understanding until these techniques
are needed. That this is problematic is well illustrated by the current controversy in
physics regarding a “theory” of the cosmos. String theory, as elegant as it may appear,
has not been tested by experiment and some believe that it can never be—measuring
quantities on the order of the cosmological constant (10~!!?) seems at present to be
outside of the realm of possibility. So, is string theory a valid model? Fluid mechanics,
on the other hand, is readily acceptable to us, and to students, because of everyday
life experiences. Maybe we really don’t need to validate these models in our graduate
classes. But one could argue that unfamiliar models of viral infections and the immune
system response, some of which we teach in mathematical biology, need justification,
and we should not neglect to cite the relevant experimental work.

To ensure that the definition of applied mathematics is not too narrow, I add
that it is, in fact, broader than mathematical modeling, and it includes tools and
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techniques. Clearly, for example, perturbation methods are part of our conception of
applied mathematics, but perhaps they are not included in mathematical modeling.
Techniques for solving partial differential equations (PDEs), both approximately and
exactly, belong to the realm of applied mathematics. Based on the content of Lin and
Segel and the FOAM course, it is clear that the RPI conception of applied mathematics
does include techniques for solving PDEs. (Kevorkian [4] or Zauderer [10] are good
examples that focus on solution techniques.) It may be less clear to many practitioners
whether the abstract theory of PDEs counts as applied mathematics in this sense.
Certainly, many would argue that PDEs, as presented in books that emphasize only
well-posedness, are not “applied mathematics.”

What are the important tools of applied mathematics? There are many! A one-
year course cannot cover all of them. The key in a course is to present enough basic
tools and examples so that students understand how to recognize new problems to
which those tools apply and to be able to learn, and possibly discover, new tools on
their own. For example, if a student learns about perturbation methods for algebraic
and differential equations, then they should be able to pick up a book and understand
asymptotic expansions for integrals. The toolbox concept and its metaphors are
entertainingly discussed by Mangel [7] in his recent text on mathematical biology.

Holmes has a good selection of important tools. The book begins with two stan-
dard chapters on dimensional analysis, scaling, and regular and singular perturbation
methods. Many books ignore scaling and its importance in determining the magnitude
of various terms in an equation when making approximations; this is a fundamental
idea in understanding perturbation methods, and books omitting it should be suspect.
Chapter 3 is a very well constructed chapter on kinetics, underpinned by the law of
mass action. One question is how to formulate a sequence of elementary reactions
that corresponds to a given set of differential equations, for example, the SIR model
of disease ecology. Holmes calls this “reverse mass action.” In the context of kinetic
equations for chemical reactions, he introduces the usual equilibrium definition and
stability concepts for systems of ordinary differential equations. He goes on to present
singular perturbation and quasi-steady state assumptions in the context of the classic
Michaelis—Menten enzyme kinetics model. Another interesting feature is a discussion
of how one writes trimolecular and higher order reactions as a sequence of elementary
reactions. Recently I used the material in this chapter for my graduate course in
mathematical biology.

Diffusion, the subject of Chapter 4, is developed from random walks and Brownian
motion. There is some discussion of the continuum description of diffusion and Fourier
transforms, and the Langevin equation appears in the last section with a random noise
term. There are a few comments about the nature of stochastic differential equations
and the fact that noise is a weak derivative of a Brownian motion. Brief appendices
discuss stochastic differential equations and Fourier transforms.

Hyperbolic equations and characteristics are introduced in Chapter 5 via an entire
chapter on traffic flow. Pedagogically, this is an excellent way to present the key ideas
of conservation laws, shock waves, weak solutions, jump conditions, and so on, in a
simple context that every student can understand. The extension of these ideas to
fluid dynamics appears in later chapters.

Chapters 6 through 9, occupying about 170 pages and over one-third of the book,
discuss the dynamics of continua. These four chapters, “Continuum Mechanics in
One Spatial Dimension,” “Elastic and Viscoelastic Materials,” “Continuum Mechan-
ics in Three Dimensions,” and “Fluids,” show the strong influence of the last part of
Lin and Segel [5] and the first part of Segel and Handleman [8]. RPI is a top-notch
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engineering school, so it may not be surprising that applied mathematics there has
evolved along the line of classical continuum mechanics. Ab initio the approach is
through Lagrangian, or material, coordinates. A good, long discussion of constitutive
laws, involving stress tests, strain, relaxation, and other material properties, accom-
panies the derivation of the equations of motion. These four chapters would form an
excellent, classical course on continuum mechanics for engineers or mathematicians.

There are 20 to 30 problems at the end of each of the nine chapters. These are
well chosen; some illustrate material discussed in the text, while many extend the
depth and breadth of the topics and applications. A few of the solutions appear on
the author’s web site.

The author states that the prerequisites for the book are an undergraduate course
in differential equations and a calculus sequence that includes some matrix algebra.
I would comment, through my own experience in teaching this material for many
years, that some multivariable calculus would be helpful, and a level of mathematical
maturity, where understanding technical discussions and equation manipulation in
the pure and applied sciences is not new, would be beneficial. For example, material
on continuum mechanics in higher dimensions requires a fairly sophisticated basis
in vector and tensor analysis. Brief appendices cover vector analysis and Taylor’s
theorem, and an instructor should expect to discuss this material one way or another.

There are seven pages of references with many citations of original articles, where
specific applications discussed in the text were published, and of other books, many
of which are older, classical texts. Some readers, both instructors and students alike,
may pine for more references to collateral material in similar books. As an example,
students often have some difficulty understanding singular perturbation methods, and
so references where additional worked examples are presented would be helpful. For
example, there is no reference to Whitham [9], which influenced generations, or to
Keener [3], which has a similar, yet different, approach to applied mathematics. Ref-
erences to Edelstein-Keshet [1], a superbly outstanding and original presentation of
mathematical biology, could have opened many eyes to enlightening models in the
life sciences, many of the same types that appear in Holmes. Thus, the scope of the
references in the text is somewhat limited.

Another tool, perhaps the most important, is the ability to write clearly. We all
must have had experience with graduate students who still struggle with, as Mangel [7]
puts it, “the culture of bad thinking and bad writing.” One way to improve is to read
a lot, especially examples of good written communication. In this regard, Holmes’s
text excels with clear, logical expression. To me, the style leaves just about the right
amount of verification to the reader. The book is not clogged with overwhelming detail
like some of the 700-page sophomore-level differential equation texts on the market.
It seems advisable that, as students progress from one level to the next, their ability
to be independent and check salient points on their own must improve. Eventually,
they must wade through research articles and research monographs that leave a lot
to the reader. The material, in Holmes’s words, “becomes more sophisticated as you
progress.” This provides some flexibility in how the book is used, allowing consider-
ation of breadth and depth. Holmes’s text, like his earlier book on perturbations [2],
should be accessible to both mathematicians and science and engineering audiences
at the senior or beginning graduate level.

In spite of the book’s emphasis on continuum theories, it establishes the tools of
applied mathematics and the underlying concepts of model development independent
of a specific application. The key is for instructors to decide what types of applications
they wish to emphasize; if a reasonable component of fluid mechanics is on the list,
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then Holmes’s text would be an outstanding choice, providing a lot of flexibility. In
summary, I strongly recommend this book for an introductory senior or graduate level

course in applied mathematics.
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Random Graph Dynamics. By Rick Durrett.
Cambridge University Press, Cambridge, UK,
2007. $64.00. x+212 pp., hardcover. ISBN
978-0-521-86656-9.

Around the year 2000 there was an extraor-
dinary burst of publications associated with
phrases like complexr networks, social net-
works, the web graph, siz degrees of separa-
tion, and small worlds, which spread rapidly
from scientific literature into popular sci-
ence awareness—Google Scholar shows that
survey papers like [1, 6] quickly attracted
literally thousands of citations. One aspect
of this literature was its analysis of vari-
ous simple-to-state mathematical models of
random graphs, distinct from the classical
Erdés—Rényi model much studied in proba-
bilistic combinatorics. The early literature
typically involved bare-hands calculations
by authors without apparent knowledge of
contemporary graduate-level mathematical
probability. To people with such knowl-
edge it was immediately clear that well-

understood techniques from branching pro-
cesses, percolation, and interacting parti-
cle models were readily applicable to these
types of model (see, e.g., your reviewer’s
own unpolished 2003 lecture notes [2]), so
there has been a subsequent steady stream
of theorem-proof papers, both by workers
switching from the classical Erdés—Rényi
school and by those (like the author and
reviewer) from mainstream mathematical
probability.

As readers of his other books know, Dur-
rett has a particular style—he writes ar-
guments the way one should think directly
about them in the first place, rather than
via the elegant indirect approaches that of-
ten appear in much dug over fields. This is
a “lecture notes” style rather than a “refer-
ence monograph” style, and indeed the book
is an expansion of a Cornell summer work-
shop course. Following this style, Durrett
has chosen a few topics, for each of which
which he can develop a few interesting re-
sults in a few lectures, making no attempt to
cover many topics or to say everything there
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